
Software Engineering Technology

Federal organizations are relying more
and more on commercial applications

to supplement, enhance, or replace propri-
etary systems. This dependency is driven
by the promise of improved functionality
and reduced total ownership cost, as well
as concern over the lack of capability to
develop and maintain proprietary infor-
mation technology applications. However,
failure to successfully select, control, and
implement these critical components con-
tinues to result in projects that are deliv-
ered late and over-budget or that fail
entirely.

The following six-step methodology high-
lights the important activities that should
take place during a commercial off-the-
shelf (COTS) implementation. Following
this methodology throughout the software
development life cycle will ensure that sig-
nificant activities are not being ignored
and will increase the chances of planning,
executing, and deploying a successful
COTS-based software solution.

One of the biggest problems sighted in
COTS-based projects is a disconnect between time
and cost expectations during planning and those
actually realized.

During the planning stages, it is impor-
tant to plan appropriately for all the major
activities necessary to devise a well
thought-out solution that will not fall
apart with the first upgrade of one of its
components. Research [1, 2, 3, 4, 5] has
indicated the essential activities that must
take place to ensure successful COTS-
based projects:
• Analyze software requirements.
• Evaluate and select COTS solution(s).
• Negotiate terms with COTS vendor.
• Implement the COTS-based solution.
• Maintain and upgrade the COTS-

based solution.
• Maintain license, subscription, and

royalty fees.
Figure 1 portrays an overview of the

six steps outlined above and highlights the
interactions that may occur throughout
the execution of these steps. While this
diagram implies a time dependency
between these steps, it is important to
realize that in certain cases this is neither

strictly adhered to nor are all the steps
necessarily performed by the organiza-
tion(s) contracted to deliver a solution.
Some requirements analysis and COTS
evaluation are likely to occur in very early
stages of a project as feasibility and
affordability are analyzed.

The following sections provide more
details about each of these steps, along
with a brief description of the factors to
consider when evaluating the affordability
and timeliness of a COTS-based solution.
Specifics about the quantification and
application of these factors can be found
in [6].

1.Analyze Software
Requirements
Software requirements analysis is a critical
part of the software development process,
although too often this activity is over-
looked or glossed over in the rush to start
building software. The requirements analysis
process is necessary to determine what
functionality is necessary to deliver the
capability required by the eventual end-
user(s).

There are two general areas that need
to be explored when determining and
documenting requirements for a software
system: end user requirements and techni-
cal requirements. The discovery process
for end-user requirements involves busi-
ness analysts or requirements engineers
asking the end-user what they expect from
the software. Once end-user requirements
have been gathered, an important next
step is for the business analysts or require-
ments engineers to restate those require-

ments and present them back to the end-
user to ensure proper understanding.
Technical requirements can be gathered
through discussions with engineers who
understand the technical nature of the
problem being solved.

The question of whether or not COTS
solutions are a viable alternative becomes
an important factor during the software
requirements analysis activity because the
software requirements drive the selection
criteria for potential COTS solutions. This
being said, it is also important not to let
the availability of COTS solutions cloud
the analysis by obscuring requirements.

Solution providers should be aware
that it is unlikely that any COTS solution
will be available to satisfy all the require-
ments for a software system. The require-
ments analysis process should identify
which requirements are the must have
requirements and which can be somewhat
bendable. During the evaluation, and possi-
bly during implementation, tradeoffs will
be necessary to compensate for function-
ality not available in COTS solutions (or
promised and not delivered with a chosen
COTS solution). Decisions should be
made during the requirements analysis
activity to determine which functions can
be subject to such tradeoffs and which
cannot. If most or all of the software
requirements are determined to be must
haves, it is wise to revisit the decision to
pursue a COTS-intensive solution.

Although the focus of this article is on
COTS software solutions, it is important
to mention here that when entire systems
are being constructed, the COTS decision
may need to be visited even before soft-

Six Steps to a Successful COTS Implementation

Arlene F. Minkiewicz
PRICE Systems

A successful implementation of a commercial off-the-shelf-intensive software system can save programs money if you have the
right solution and understand the potential risks involved.

August 2005 www.stsc.hill.af.mil 17

Analyze Software

Requirements
Evaluate and

Select

Negotiate

Terms

No viable solutions?

Implement

COTS Solution

COTS fall short of expectations?

Maintain/Upgrade

Solution

Maintain License

and Renegotiate

Figure 1: Overview of the Six Steps

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering August 2005

ware requirements analysis commences.
During the analysis of system require-
ments, decisions may be required to deter-
mine whether certain functionality should
be addressed with hardware or software.
The availability of software COTS solu-
tions could be a factor in the determina-
tion of the affordability of such tradeoffs.

As with all activities in a software
development process, successful execu-
tion of the requirements analysis process
takes time and effort. The major driver in
determining time, cost, or effort for the
software requirements analysis activity is a
measure of the amount of functionality
the software system is intended to deliver.
The measurement of software size is always
a challenge. A measure that quantifies
functionality delivered such as function
points or analogies to known systems is
best.

Whether the plan is for that function-
ality to be delivered primarily with COTS
solutions, newly developed solutions, or
some combination of the two, the time
and effort devoted to requirements analy-
sis should be fairly consistent. The techni-
cal complexity of the functionality as well
as the software’s operational platform will
also drive the requirements analysis effort
because more complex solutions require
more time to understand and communi-
cate. Additionally, the presence of project
constraints, timing, memory, or schedule
will impact the effort required for this
activity.

2. Evaluate and Select COTS
Solution(s)
Once a decision to pursue a COTS alter-
native is made, the first step is to deter-
mine the availability of COTS solutions
that have the potential to provide needed
functionality, then evaluate these solu-
tions. The main reasons to evaluate are the
following:
• Determine whether the functionality

promised is the functionality delivered.
• Determine whether system non-func-

tional requirements (portability, relia-
bility, security, performance) can be
met.

• Determine whether functional require-
ments can be met by the functionality
delivered.

• Determine whether a proposed suite
of components can operate success-
fully in the environment(s) where the
system is intended to operate.

• Determine whether a proposed set of
components can operate successfully
in an integrated fashion.

• Determine the stability and viability of

the vendor.
• Determine the willingness of the ven-

dor to cooperate and help make the
project successful.
The evaluation needs to be focused on

more than just product characteristics
such as functionality, maturity, technology,
architecture, and long-term viability.
There should also be a focus on vendor
characteristics such as maturity, stability,
cooperation, and ability to provide ade-
quate support, training, and documenta-
tion. The evaluation should also be used
to ensure that there are no compatibility
issues associated with using COTS solu-
tions from multiple vendors.

The selection process is often a com-
bination of the following three evaluation
techniques:
• Progressive filtering of available

COTS components. This requires
several iterations of filtering, each one

going into progressively more detail
until a single solution or set of solu-
tions emerges as the best answer.

• Puzzle assembly process. This
approach suggests that it is better to
evaluate a set of components at one
time using an evolutionary prototyping
approach. In this method, multiple sets
may be evaluated in parallel to identify
which of them comes closest to solv-
ing the entire puzzle presented by the
system requirements.

• Identifying the keystone COTS
software components. This is identi-
fying those components for which
requirements (whether they be techni-
cal, process, functional, vendor, etc.)
are unbendable, and then basing other
component selections on compatibility
and ease of interface with the keystone

components.
A commonly cited challenge by system

integrators is that COTS products often
fail to deliver the functionality or other
requirements promised during evalua-
tions. It is prudent to get some hands-on
time with the components being evaluated
where possible; this may be problematic as
it most likely requires a great deal of coop-
eration and support from both the vendor
and the integrating organization.

When performing a COTS evaluation,
it is valuable to obtain references from the
COTS vendors in an effort to speak with
developers and end users who have
worked with a particular COTS solution.
This not only provides valuable feedback
about vendors’ responsiveness and
dependability, it also aids the planning
process by highlighting problems or pit-
falls other integrators may have experi-
enced.

The evaluation and selection activity
not only facilitates identification of avail-
able COTS solutions, it also points to
those pieces of functionality that cannot
be satisfactorily implemented by existing
off-the-shelf solutions. An important
byproduct of this investigation may be an
examination of the cost, schedule, and
effort associated with developing custom
code to make up for required functionali-
ty missing in COTS solutions. This exam-
ination may require revisiting the
cost/benefit analysis leading to the deci-
sion to build a COTS-based solution.

Generally, the time and effort devoted
to the selection and evaluation activity is
often based on a predetermined level of
effort. The determination of this level of
effort should consider the amount of
functionality being implemented with
COTS solutions (based on functional size
or analogy), the number of solutions that
will be evaluated, the type(s) of evalua-
tions being performed, and the number
and criticality of evaluation criteria.

3. Negotiate Terms With
COTS Vendors
Certainly it is important to negotiate the
best deal possible when working with one
or more vendors to craft a solution. It is
even more important to understand the
impact of these negotiations and their
timing on the eventual success or failure
of your project. Several of the most com-
monly cited challenges of those building
software solutions with COTS compo-
nents involve vendor forthrightness and
cooperation [4].

Vendors are much more likely to
address customer concerns with missing

“When performing a
COTS evaluation, it is
valuable to obtain

references from the
COTS vendors in an
effort to speak with
developers and end

users who have
worked with a particular

COTS solution.”

Six Steps to a Successful COTS Implementation

or incomplete functionality and/or bugs
in the software before signing on the dot-
ted line. During the negotiation process, it
is important to address and resolve any
known issues and establish expectations
for issues that emerge during the integra-
tion process and throughout the product
life cycle. Clearly, the size of the vendor
and the size of the purchase may be fac-
tors in determining how demanding any
particular customer can be, but it is impor-
tant to set expectations with all of the
project stakeholders.

The end result of this negotiation
should be a clear picture of the non-recur-
ring and recurring costs associated with
the system being developed. A nonrecur-
ring cost is a one-time fee associated with
acquiring the COTS solution such as the
purchase price of shrink-wrapped soft-
ware. Recurring costs are those generally
based on usage or time of use such as
annual licensing fees. Negotiations should
also result in a common understanding
between parties of update and upgrade
policies, as well as expectations with
regard to vendor responsiveness and
cooperation. It may also be necessary dur-
ing this step to develop a plan with the
vendor to ensure that maintenance of the
deployed solution be possible even if the
vendor goes out of business. This plan
generally involves the escrowing of source
code to be made available only under
terms of the agreement such as bankrupt-
cy or company demise.

The cost and effort drivers for this
activity should be broken into two parts.
The first part is the actual dollar value that
is determined for delivery of the COTS
component after negotiations and any
promised royalties and other fees. The
second part relates to the amount of time
and resources that must be devoted to the
negotiation with the vendor.

4. Implement the
COTS-Based Solution
Once analysis, evaluation, and selection of
a COTS-based solution are complete,
implementation can commence. The fol-
lowing activities may be required to ensure
successful implementation.

Tailoring of a COTS Solution
There are certain necessities that should
be performed in or around software to get
the COTS software components config-
ured for the system and its requirements.
Databases and other parameters need to
be initialized and loaded, all or part of the
components need to be registered with
the operating system, security must be

activated or initialized, screens and reports
need to be scripted, and other script devel-
opment may be required.

Although these activities are unlike tra-
ditional coding exercises, they do take time
and effort to complete. The results of
these activities require testing and verifica-
tion. These tasks also require a significant
level of understanding as to how the
COTS component(s) work and how to
work with them. This requires reading
manuals and/or attending training and
then experimenting with the actual com-
ponents to reach a level of competency.

The major cost, effort, and schedule
drivers for the tailoring activity include the
amount and complexity of scripts, data-
base parameters, reports, and screens
being customized. Additionally, as security
and access control requirements increase
in rigor, they will drive up time and cost. It
is important also to consider the ease with
which the COTS solution can be under-
stood, the quality of training and docu-
mentation, and the integration team famil-
iarity with the COTS solutions being used
and the system being implemented.

Modification of COTS Software
Generally the definition of COTS soft-
ware precludes modifications because
COTS software does not have source
code available. This is the case when the
COTS software is a shrink-wrapped com-
mercial product. Sometimes solutions call
for the integration of a series of off-the-
shelf components that do not meet this
traditional definition of COTS but rather
are components with source code avail-
able that are either furnished by the cus-
tomer or otherwise obtained. While these
projects are not strictly COTS projects,
they do happen and are mentioned here
for completeness.

It would be nice if the COTS software
completely satisfied all the functional
requirements it was selected to meet, but
this is often not the case. In situations
where the source code can be made avail-
able, the project team needs to make a
determination whether or not modifica-
tion is an option. It is generally a bad idea
to make modifications to COTS software
because this negates much of the produc-
tivity increase obtained from using COTS
components and is likely to jeopardize any
likelihood of supplier maintenance of the
COTS components. If COTS modifica-
tions are being considered, care should be
taken to ensure that these modifications
are very modular in nature. The develop-
ers need to learn a great deal about the
architecture and basic structure of the
solution before any modifications can be

made. It is important to understand that
the project productivity hit can be sub-
stantial even when the slightest modifica-
tions are made to a COTS component.

The major cost, effort, and schedule
drivers for modifications to COTS soft-
ware are the same factors that drive costs
for any software modification project
(functional size, extent of modification,
technical complexity, eventual operating
platform, productivity, and efficiency of
development organization). These factors
must then be augmented to account for
unfamiliarity of the COTS solution code,
quality of COTS training and documenta-
tion, vendor cooperation, development
team experience with COTS solutions, and
the COTS integration process. It is also
important to include maintenance of the
entire COTS component in the affordabil-
ity analysis as once modifications have been
made it is unlikely that the COTS vendor
will continue to support their solution.

Design, Code, and Test of Glue Code
Glue code literally holds the system
together. Glue code is any code that needs
to be written to make the COTS software
components function as advertised
and/or as required. It is the code that ref-
erences the interfaces in the COTS soft-
ware component and needs to interpret
return codes from these interfaces. Glue
code is often required to convert data and
other information from the format in
which the system maintains data to the
format required by the COTS component.
In a well-written application, the glue code
acts as a layer between the system and
COTS components, encapsulating the
data in such a way that upgrades and
replacements are as painless as possible.
Finally, glue code is sometimes required to
add functionality that the COTS software
component implements inadequately or
that should be provided by the COTS
component but is not.

These development activities are com-
plicated due, primarily, to unavailable
source code. The complexity of glue code
development is akin to a situation where
an entirely new team of developers is
brought in to integrate custom built com-
ponents, but is given limited or no access
to the original development team and the
source code. The unfamiliarity of the
interfaces, along with the inability to
debug the components, adds complexity
to the development exercise.

Another factor that makes glue code
development differ from traditional code
development is the complete reliance on
vendors to fix bugs when they are discov-
ered, ensure that upgrades are upwardly

August 2005 www.stsc.hill.af.mil 19

Software Engineering Technology

compatible, release stable products, and fill
in where documentation falls short. Bug
fixing can be particularly problematic in a
COTS project, especially when there are
multiple vendors involved or when modifi-
cations have been made to the COTS com-
ponents. With multiple vendors, especially
with unavailable source code, the integra-
tor must rely on the vendors not only to fix
the bugs but also to cooperate with each
other in the identification of where a bug
actually resides. When the COTS compo-
nents have been modified, the integrator
often must struggle to convince the ven-
dor that the bug is in the original code and
not a side effect of changes they have
made. Careful modularization and docu-
mentation of any COTS modifications
may help alleviate this problem.

As with modifications to COTS com-
ponents, the major cost, effort, and sched-
ule drivers for glue code development are
not unlike those drivers associated with
any custom development, but the produc-
tivity of the development team needs to
be adjusted to account for unfamiliarity
and unavailability of COTS components
along with the requirement for vendor
support and cooperation in solving inte-
gration problems. As the number of dif-
ferent COTS components and the num-
ber of different vendors involved increas-
es, so increases the complexity (thus effort
and schedule) of this activity.

Integration and Test of COTS
Components With Other COTS or
Custom Components
The system needs to be integrated and
tested to ensure that all functional and
non-functional requirements are met. This
activity tests the entire system (or subsys-
tem) as a complete unit, verifying that
there are no system-level problems associ-
ated with incompatibilities or competing
demands of components for limited
resources.

Requirements related to performance,
reliability, and security could be particular-
ly problematic during this activity as these
types of problems are likely to go unno-
ticed until the whole system is running
together. It is best to use an incremental or
evolutionary approach when building
COTS-inclusive systems, as these
approaches advocate successive integra-
tions during development rather than a
waterfall-type process where integration
does not happen until the end of the
development.

A well-designed integration and test
approach would focus early releases on
those areas that are high risk or most like-
ly to lead to incompatibilities. If multiple

COTS components from multiple ven-
dors are being integrated, it is important
to have all of them running together at the
same time as early as possible, even if each
is functioning in very limited capacity with
respect to its intended feature set. This
helps identify potential contention and
incompatibilities between components.

When assessing the effort and sched-
ule for glue code development, tailoring,
or integration activities, an important fac-
tor is the update cycle for the COTS solu-
tions being integrated. If updates/
upgrades are frequent, additional time and
effort may be required to evaluate and
possibly incorporate these updates.

Upgrades and updates may be included if
they contain required bug fixes, improve-
ments to keep the look and feel current
with user expectations, or features that
relate to missing or incomplete require-
ments in earlier versions. Vendor quality
and stability, along with vendor(s) regular
release schedules, are important factors in
assessing effort associated with updates
and upgrades.

In general, the effort, cost, and sched-
ule for many system-level integration
activities is likely to be higher for COTS-
inclusive software than software that is
composed of custom-built components
because of the unfamiliarity with the code.
The COTS software component should
be viewed by the integrator as a black box.
The factors that drive the effort and
schedule for integration activities include
the amount of functionality being inte-
grated (including functionality provided
by homegrown development as well as
that coming from the COTS compo-
nents), the complexity of the functionali-

ty, the operating platform for the system,
glue code size, and vendor-related issues
such as cooperation, support, and upgrade
policies.

5. Maintain and Upgrade the
COTS-Based Solution
Once the software is deployed, the follow-
ing two ongoing activities are required to
keep it operational and keep end-users
happy.

Evaluation and Inclusion of Updates
and Upgrades From the Vendor
There are countless reasons why the inclu-
sion of updates and upgrades are desirable
once the product is deployed. If there are
bugs in the COTS software that affect sys-
tem operation, then an upgrade is obvi-
ously needed. Beyond this, the vendor
should be upgrading the product to keep
up with rapidly changing technology. To
maintain a software system that meets
market expectations with respect to per-
formance, look and feel, operating plat-
forms, etc., updates of the COTS software
components will be likely.

Whether including an update or
upgrade, each refresh of the COTS com-
ponents poses potential risk. Assessment
is required with each release to determine
whether it makes sense to include it in the
software system. Sometimes upgrades
change the interfaces to the COTS soft-
ware components so that with the
upgrade, existing functionality ceases to
work correctly, requiring a rewrite of
some of the glue code. Vendors find that
in order to offer new features or to keep
up with technology, they must change
interfaces and databases or rework func-
tionality. To get access to the new features
and technology in an upgrade, the soft-
ware developer may be forced to accept
changes he or she does not want or need
as well – creating additional cost with no
added value to the software system.

Every upgrade also carries with it the
possibility of incompatibilities with the
existing software system, other COTS
software components, or even the operat-
ing platforms on which the system runs.
For this reason, each upgrade should
include a repeat of system operational
testing and system regression testing to
ensure that the effects on system opera-
tion are understood and desirable. While it
is important to understand all of this
when evaluating whether or not to
upgrade, it is also important to understand
that there is a risk associated with failure
to upgrade. At some point, the vendor will
discontinue support of older versions of

20 CROSSTALK The Journal of Defense Software Engineering August 2005

“It is generally a bad
idea to make

modifications to COTS
software because this
negates much of the
productivity increase
obtained from using

COTS components and is
likely to jeopardize ...

supplier maintenance ...”

Six Steps to a Successful COTS Implementation

August 2005 www.stsc.hill.af.mil 21

the COTS software.
The major factors that drive cost,

effort, and schedule for the evaluation of
COTS upgrades include the amount of
functionality delivered by COTS solutions,
the number of COTS solutions in the sys-
tem, the upgrade/update frequency of the
vendor(s), and the quality and stability of
the COTS solutions. When (and if) a deci-
sion has been made to include
upgrade/updates of COTS solution(s),
the drivers for the integration and test are
the same as those for integration and test
during development, although the extent
of effort should be tempered by the
extent of functionality changes in the
upgrades/updates.

Bug Fixes
Software, whether it is homegrown or
acquired externally, is likely to have
defects. Bug fixing efforts for COTS-
intensive systems will differ significantly
from typical repair efforts. Additionally,
bugs may exist in the COTS software
component that the vendor is unable or
unwilling to fix for which workarounds in
the glue code need to be developed.

The effort associated with bug fixes
for COTS software, as with any software,
is a direct function of the quality of the
initial software offering, as well as the
quality with which bugs are fixed. This
quality is generally a function of the
amount of functionality, the complexity of
the system, and the development process-
es and practices employed by the initial
software developer. For COTS software,
some of these factors are apparent and
some are hard – if not impossible – to
find out. Also, how and when the bugs in
the COTS component get fixed is for the
most part out of the integrators’ control.

These factors complicate the process
of planning for maintenance of COTS-
based systems. Additionally, the mainte-
nance process is plagued with the same
issues cited earlier for the glue code
design, integration, and test: It is not
always obvious where the bugs actually
occur. Despite the hurdles mentioned, it is
still possible to plan proactively for the
maintenance of a COTS-based system
based on what is known. Functional size
of the entire system (including not just
COTS components but homegrown com-
ponents as well), system complexity, oper-
ating platform, glue code size, amount of
modification, and maintenance team pro-
ductivity can be used to baseline the
effort. This effort should then be adjusted
for the loss of productivity associated
with debugging through black box code
and interfacing with multiple vendors.

6. Maintain License,
Subscription, and Royalty Fees
License or maintenance fees need to be
paid in order to ensure updates and
upgrades as well as continuing support of
the COTS components. It is important to
understand vendor(s) upgrade policies. It
is also wise to do a long-term analysis of
the differences between annual subscrip-
tion fees (if subscription is an option) ver-
sus paying for upgrades on an individual
basis. This analysis should include upgrade
policies, vendor stability, and frequency of
releases. License and royalties should be
an important part of the initial negotiation
process. Renewal periods are an opportu-
nity to revisit the terms of the negotiation
to determine whether the vendor is meet-
ing support and upgrade commitments.

Conclusions
A well thought-out and well-executed
software project that incorporates one or
many COTS solutions can happen more
quickly and be more cost effective than
the same system implemented with cus-
tom developed components. Too often,
COTS projects are not thought out or
planned, running on the incorrect
assumption that every COTS solution is a
small integration project without the
issues and complexities cited above. This
way of thinking leads to unrealistic and
poorly managed expectations, resulting in
failed projects. These types of failures
occur when projects fail to plan for or
incorporate the additional activities
unique to COTS-intensive developments.
Following this six-step methodology will
ensure that important activities and deci-
sion points are properly executed, reduc-
ing many of the risks associated with
such developments.u

References
1. Ellis, T. “COTS Integration in

Software Solutions – A Cost Model.”
INCOSE Symposium, St. Louis, MO,
July 1995.

2. Center for Software Engineering.
“COCOTS.” Los Angeles, CA: Uni-
versity of Southern California, June
1997 <http://sunset.usc.edu/research/
COCOTS/cocots_main.html>.

3. Abts, Christopher. “COTS Software
Integration Cost Modeling Study.” Los
Angeles, CA: Center for Software
Engineering, June 1997.

4. Brownsword, L., et al. “Lessons
Learned Applying Commercial Off-
the-Shelf Products.” Pittsburgh, PA:
Software Engineering Institute, June
2000 <www.sei.cmu.edu>.

5. Oberndorf, P., et al. “Workshop on
COTS-Based Systems.” Software
Engineering Institute, Nov. 1997
<www.sei.cmu.edu>.

6. Minkiewicz, A. The Real Costs of
Developing a COTS-Based System.
Proc. of IEEE Conference on
Aerospace and Defense, Big Sky, MT.,
Mar. 2004.

About the Author

Arlene F. Minkiewicz is
chief scientist of the
Cost Research Depart-
ment at PRICE Systems.
She is responsible for the
research and analysis

necessary to keep the suite of PRICE
estimating products responsive to cur-
rent cost trends. In her 20-year tenure
with PRICE, Minkiewicz has researched
and developed the software cost estimat-
ing relationships that were the corner-
stone for PRICE’s commercial software
cost estimating model, ForeSight, and
invented the Cost Estimating Wizards
originally used in ForeSight that walk the
user through a series of high-level ques-
tions to produce a quick cost analysis. As
part of this effort she has invented a siz-
ing measurement paradigm for object-
oriented analysis and design that allows
estimators a more efficient and effective
way to estimate software size. She
recently received awards from the
International Society of Parametric
Analysts and the Society of Cost
Estimating and Analysis for her white
paper “The Real Cost of COTS.”
Minkiewicz contributed to a new para-
metric cost estimating book with the
Consortium for Advanced Manufactur-
ing – International called “The Closed
Loop: Implementing Activity-Based
Planning and Budgeting,” and she fre-
quently publishes articles on software
estimation and measurement. She has
also been a contributing author for sev-
eral books on software measurement
and speaks frequently on this topic at
numerous conferences.

17000 Commerce PKWY STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
Fax: (856) 608-7247
E-mail: arlene.minkiewicz@

pricesystems.com

